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Stereochemical Course of the Elimination Catalysed by L-Phenylalanine
Ammonia-lyase and the Configuration of 2-Benzamidocinnamic Azlactone

By K. R. HaNSON
(Biochemistry Department, The Connecticut Agvicultural Experiment Station, P.O. Box 1108, New Haven, Connecticut 06504)

and R. H. WigHTMAN, J. STAUNTON, and A. R. BATTERSBY*
(University Chemical Laboratory, University of Cambridge, CB2 1IEW)

Summary Two rational syntheses of r-phenylalanine are
described which allow stereospecific labelling with
isotopic hydrogen at C-3; the labelled materials are used
to establish that r-phenylalanine ammonia-lyase elimin-
ates the pro-S proton from C-3 of L-phenylalanine
together with ammonia to generate #rams-cinnamate
(antiperiplanar elimination).

L-PHENYLALANINE AMMONIA-LYASE! (EC 4.3.1.5) catalyses
the elimination of a proton and ammonia from L-phenyl-
alanine (1) to give #rams-cinnamate (2) which is further
transformed in higher plants into a vast range of phenyl-
propanoid derivatives.

The C-3 carbon atom of phenylalanine is a prochiral
centre? carrying two stereoheterotopic hydrogen atoms and,
if the elimination reaction (1)—(2) is stereospecific, then
either the pro-R or pro-S hydrogen atom will be lost
[marked Hy and Hy on (1)]+. Two syntheses of phenyl-
alanine bearing stereospecific labels at C-3 have been
devised to determine the stereochemistry of the elimination
step.

For the first symthesis,® [7-*H]benzaldehydet (3) was
converted into one azlactone, m.p. 165—166°, of structure
(5), or less probably (7); the interpretation of the relevant
n.m.r. and other data has been disputed.® Opening the
azlactone with ethoxide, hydrogenation of the product over
palladium (four separate hydrogenations were run which
were expected® to be cleanly syn-stereospecific), and
acidic hydrolysis of the products afforded four samples of
DL-[3-°H,]phenylalanine. These were treated separately
with r-phenylalanine ammonia-lyase from potatoes?,® until
the L-isomer had been converted completely into cinnamate;
formation of cinnamate from p-phenylalanine is negligibly
slow.” The ®H released to the aqueous medium in each
of the four preparations corresponded to 0-59, of that
present in the original rL-phenylalanine. This result, in
conjunction with those described later, shows that both the
hydrogenation and the enzymatic elimination process are
at least 99-59, stereospecific. The configuration at C-3 of
the r-phenylalanine produced by this synthesis was estab-
lished as follows (correct absolute configurations are shown
throughout).

The azlactone (6) derived from [7-*H]benzaldehyde® (4)
was opened with sodium hydroxide, the resultant acid (9)
was hydrogenated, and the products were hydrolysed by

t pro-S and pro-R refer throughout to unlabelled materials.
compounds, and other stereochemical nomenclature see ref. 2.

acid to the racemate (3R)-r-, plus (3S)-p-[3-*H,]phenyl-
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corresponding N-chloroacetyl derivatives and resolution
with hog kidney acylase-119 gave the free L-isomer (11) and
N-chloroacetyl-(3S)-p-[3-2H, Jphenylalanine. The racemis-
ation at C-2 during the acylation step was estimated to be
<109, by carrying out a parallel run in D,O with unlabelled
prL-phenylalanine and examining the product by mass
spectrometry.

Nitrous acid-hydrogen bromidel* converted (11) into
(2S,3R)-2-bromo-3-phenyl[3-2H, Jpropionic acid (14) which
was reduced catalytically to (35)-3-phenyl[3-H,]propionic

For this terminology, the application of the R/S-system to labelled
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acid (15). Ozonolysis of (15) and oxidation gave [2-2H,]-
succinic acid shown by mass spectrometric and o.r.d.
measurements!? to contain 81 4 8%, of the (2-S)-isomer
(16). Complementary evidence was gained by racemising
with acetic anhydride the C-2 centre of (13) and degrading
the product (13 + 18) wvia (19) to [2-*H,]succinic acid:
77 4 8% of (2R)-isomer (20).

These results establish the configuration at C-3 of the
[3-2H,]phenylalanines and, if syn addition of hydrogen is
accepted, they also show that the Plochl-Erlenmeyer
azlactone has the Z-configuration (6), ¢.e., the bulky
substituents are trans.

As the tritiated L-phenylalanines produced directly by the
above synthesis must have had the R-configuration at C-3,
the foregoing enzymatic experiments on the tritiated sub-
strate prove the specific loss of the pro-S hydrogen atom in
the elimination step.

This was confirmed by work with the 2H,-labelled phenyl-
alanines. On complete enzymatic conversion of the
(3R)-L-isomer of (11 + 13) into cinnamate, mass spectro-
metry supported by n.m.r. showed 98 - 4%, *H retention,
whereas the (3S5)-L-isomer of (18 + 13) gave 0 + 49, ?H
retention.
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The elimination process at pH 8-7 is subject to a statistic-
ally significant primary 3H isotope effect which was demon-
strated by observing the degree of retention of 3H in (3S)-L-
[3-*H,]phenylalanine when the enzymatic reaction was ca.
459%, complete. [1-¥C]Phenylalanine was used as internal
reference and the observed rise in *H :1C ratio from 5-90 at
the outset to 6-97 in the recovered L-phenylalanine corres-
ponds to a discrimination factor against 3H of at least 1-2.

1 J. Koukol and E. E. Conn, J. Biol. Chem., 1961, 236, 2692.
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This value will be lower than the true kinetic isotope effect
because of (a) the presence of 119, of the (3R)-isomer in the
sample used causing enhanced rate of loss of *H from the
phenylalanine pool and (b) possible enzyme-mediated
exchange of 3H from the (3-S)-isomer without formation of
cinnamate. A parallel experlmen‘c with (3R)-L-[3-*H,]-
phenylalanine showed an increase in ratio from starting
material to recovered amino-acid only of 6-05 to 6-21 which,
if significant, could be attributed to the 11%, of (35)-isomer
present in the sample.

The second synthesis used liver alcohol dehydrogenase to
introduce the asymmetry providing a link between two
important networks of configurationally related materials.
Enzymatic reduction of [7-2H,]benzaldehyde (4) afforded
(15)-[1-2H, ]benzyl alcohol!® (22) which as the corresponding
toluene-p-sulphonyl derivative (23) was treated with sodio-
malonic ester to yield (24). Hydrolysis followed by
bromination gave (25) which was then converted by
ammonia into equimolar amounts of (3R)-p- and (3R)-L-
[3-2H,]phenylalanine (11 4 26); found 96 -+ 4% 2H,.
Degradation of (24) via (15) afforded (16): 95 4 59% of
(2S)-[2-2H, Jsuccinic acid. rL-Phenylalanine ammonia-lyase
converted the r-isomer (11) of (11 + 26) into [3-2H,]cinna-
mic acid: found 98 + 49, 2H,, proving, like the foregoing
results, that enzyme specifically eliminates the pr0-3S
hydrogen atom of r-phenylalanine.

The elimination reaction is not accompanied by a signifi-
cant loss or exchange of the hydrogen at C-2. When
DpL-[2-*H,]phenylalanine!4 was treated with the enzyme and
the reaction was taken to completion, less than 19, of the
tritium in the r-enantiomer was released.

The rigorously defined stereochemistry of the enzymaitic
elimination process thus corresponds to that catalysed by
L-histidine ammonia-lyase!® with a mechanism in which the
pro-S hydrogen and the product of the reaction between the
substrate -NH,* and the enzyme’s prosthetic group® are
eliminated in an awtiperiplanar manner to yield trams-
cinnamate directly.
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